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1 Introduction

By using various indicators, empirical evidence for the manufacturing sector strongly

suggests that there is a positive relationship between the size and diversification of

firms.1 Moreover, there is evidence on an important role of firm-specific characteris-

tics for both diversification patterns and firm size.2 For instance, Davies et al. (2001)

conclude that “many empirical studies confirm positive statistical associations between

diversification, firm size, R&D and advertising” (p. 1317) and argue that “diversifica-

tion is driven [...] by a desire to exploit a specific asset” (p. 1334).

This paper presents an oligopoly model of asymmetric multiproduct firms in order to

examine the apparent link between firm size, diversification and specific characteristics

of firms. The set up may be described as follows. Potential firms decide whether or

not to enter at some fixed cost. They are endowed with some possibly different (and

immutable) marginal cost and product quality. These characteristics are of public good

nature from the perspective of a firm, i.e., apply to any good within a firm’s product

line. After entering the economy, firms choose the number of products offered to the

market (stage 1), and then enter product market competition (stage 2).

The main contribution of the paper is twofold. First, it derives basic properties of

profit functions of multiproduct firms for the widely-used linear-demand model with

differentiated goods under Cournot competition, for a given configuration of product

ranges (stage 2 equilibrium). Second, using these properties, the analysis shows that,

typically, firms with more favorable quality-cost margins have both larger size (mea-

sured by total sales) and larger product ranges, consistent with the empirical evidence

outlined above.

Moreover, the analysis seeks to identify determinants of average industry diver-

1This pattern seems to be consistent over time at least from the 1950s onwards. Well-known
studies supporting this conclusion are Gort (1962), Gollop and Monahan (1991), Lichtenberg (1992)
and Markides (1995) for the US as well as Amey (1964) and Utton (1977) for the UK. More recent
studies include Aw and Batra (1998) for Taiwan, Davies et al. (2001) for a sample of European firms
and Gourlay and Seaton (2004) for the UK.

2Roberts and Supina (2000) report a negative correlation between firm size and marginal costs
among U.S. manufacturing firms. Moreover, using micro-level data from the ‘Longitudinal Research
Database’ (developed by the U.S. Bureau of the Census), Baily et al. (1992) find that the size of U.S.
manufacturing firms is positively related to their total factor productivity (see their Tab. 8 and 9).
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sification, in addition to those of the size-diversification relationship. For instance,

Gorecki (1975, p. 134) suggests that “specific assets of a technological nature formed

the basis of much [industry] diversification” in the UK, whereas Baldwin et al. (2000)

find no evidence of a role of technological characteristics for average diversification

in Canada. The present analysis supports the findings of Gorecki (1975) by showing

that, for a given number of symmetric firms, an increase in quality-cost margins raises

product ranges. In contrast, higher substitutability of products reduces diversification

of product lines.

The mechanisms which give rise to a positive size-diversification relationship suggest

more generality beyond the Cournot model. For this reason, and in order to capture

the notion that products offered by a firm are closer substitutes for each other than for

products sold by other firms (unlike in the linear-demand model), Bertrand competition

in the nested multinomial logit model is examined (e.g. Anderson and de Palma,

1992; Anderson, de Palma and Thisse, 1992). Restricting the analysis to duopoly for

tractability reasons, it is shown that also in the nested multinomial logit model a larger

firm has a more diversified product line.3

There is a considerable literature on the determinants of corporate diversification.4

Besides the emphasis of empirical researchers on the role of technological character-

istics, at least three further sources of diversification are frequently mentioned in the

literature. First, there is the “agency view”, according to which “a manager might

direct a firm’s diversification in a way that increases the firm’s demand for his or her

particular skills” (Montgomery, 1994, p. 166). Second, it has been suggested that

diversification contributes to risk management of firms. Third, diversification may be

a mean to extend the boundaries of a firm in the presence of internal coordination

problems. Whereas the first two of these views do not seem to imply a particular size-

diversification relationship, the latter is potentially interesting in this respect as inter-

nal coordination problems naturally arise in large firms. To the best of my knowledge,

3Bertrand competition under linear demand is also analyzed. General results are difficult to obtain
however, as reaction functions at stage 1 may not be well-behaved everywhere. The underlying reason
is that, compared to the Cournot case, diversification incentives may be considerably weaker.

4Montgomery (1994) provides an excellent literature review of this topic.
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however, the theoretical literature has not yet focussed on the relationship between

product diversification and firm size.5

The remainder of the paper is organized as follows. Section 2 presents the linear-

demand model with Cournot competition and asymmetric multiproduct firms. Section

3 analyzes the equilibrium for this model in the light of the empirical regularities

outlined above. Section 4 examines the size-diversification relationship in alternative

multiproduct models. The last section concludes.

2 The Cournot Model

Consider a market for differentiated goods and let K be the set of all varieties in the

market. The varieties are produced by a set I = {1, ..., I} of firms (indexed by i),

which is determined under free entry. Let Ni be the set of goods produced by firm i,

in (endogenous) number Ni. The inverse demand function for variety k ∈ K has the

familiar linear form

pk = ak − βxk − γ
X
l 6=k

xl, (1)

β > γ > 0, where pk and xk denote the price and quantity of product k, respectively.

Suppose that there is a large (but finite) number of potential entrants. In order to

enter, firms have to incur sunk cost F > 0. Initially, all firms draw a quality parameter

Ai and a (constant) marginal production cost ci from some joint distribution function

g(A, c) which has support (0, Ā]× [0, c̄], c̄ ≥ 0, 0 < Ā− c̄ <∞.6 Suppose ak = Ai for

all k ∈ Ni in (1). Thus, both product quality and unit cost apply to any variety a firm

offers. This is meant to capture that, for instance, technological characteristics are of

public good nature from the perspective of a single firm (e.g., Caves, 1971).

After deciding, on basis of firm characteristics, whether or not to enter the market,

there are two stages, in which firms make decisions non-cooperatively and simultane-

5Generally, multiproduct models with asymmetric firms are rare. A notable exception is Champ-
saur and Rochet (1989), who propose a duopoly model of asymmetric multiproduct firms with vertical
product differentiation.

6Introducing asymmetry of firms under free entry in this way heavily draws on recent contributions
of Anderson and de Palma (2001) and Melitz (2003).
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ously. At stage 1, firms choose their number of products Ni (“product range”). Let

C(Ni) denote the costs of firm i to introduce Ni ∈ [1, N̄ ] products in the market, where

C : [1, N̄ ] → R+ is an increasing, twice continuously differentiable and convex func-

tion, N̄ < ∞.7 For instance, one may think of C as costs for marketing or designing

products.8 The I−tuple N = (N1, N2, ..., NI) is called a “configuration of product

ranges”. At stage 2, firms enter Cournot competition. This timing of events follows

some existing literature on multiproduct firms (e.g., Raubitschek, 1987; Sutton, 1998;

Ottaviano and Thisse, 1999). However, in contrast to this literature, the present set

up allows for asymmetry of firms ex ante.

3 Equilibrium Analysis

In this section, the equilibrium of the Cournot model is analyzed.

3.1 Cournot Competition (Stage 2)

First, consider the decision problem of firms at stage 2, for a given configuration N.

Taking output levels of rival firms as given, each firm i ∈ I solves

max
xk≥0,k∈Ni

πi =
X
k∈Ni

(pk − ci)xk s.t. (1) and ak = Ai ∀ k ∈ Ni. (2)

The first result shows that stage 2 equilibrium profits depend on quality-cost margins

αi ≡ Ai − ci, i ∈ I. We denote α = (α1, α2, ..., αI). Moreover, a multi-product firm i

produces equal output levels for all varieties k ∈ Ni which it offers.

Proposition 1. (Equilibrium at stage 2 in Cournot competition under (1)). In

an interior Cournot-Nash equilibrium at stage 2, for all k ∈ Ni, firm i ∈ I produces
7As will become apparent, restricting the choice set of firms at stage 1 to the closed interval [1, N̄ ],

rather than to [1,∞), ensures existence of equilibrium. It is a weak assumption as N̄ can be arbitrarily
large.

8Assuming convexity of C(·) does not deny that there may be economies of scope (or “subadditive
costs”) in marketing, designing or manufacturing multiple products within a firm (see, e.g., Baumol,
1977). However, one may think of increasing (Coasian) bureaucracy costs of product proliferation as a
counteracting force. In fact, all that is needed is that C(·) is not “too concave” in the relevant range.
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output level

xk =
Λi

(1 +
P

i Γi) [2(β − γ) + γNi]
≡ Xi(N,α, β, γ) (3)

and earns profits

πi = Ni(β − γ + γNi)Xi(N,α, β, γ)2 ≡ Πi(N,α, β, γ), (4)

where Γi ≡ γNi/ [2(β − γ) + γNi] ∈ (0, 1) and Λi ≡ αi

³
1 +

P
j 6=i Γj

´
−
P

j 6=i αjΓj.

All proofs are relegated to the appendix. The following corollary characterizes profit

functions Πi in equilibrium at stage 2.

Corollary 1. For all i, j ∈ I, j 6= i, we have (i) ∂Πi/∂Ni > 0 and ∂2Πi/∂N
2
i < 0,

(ii) ∂Πi/∂Nj < 0, (iii) ∂Πi/∂αi > 0 and ∂Πi/∂αj < 0, (iv) ∂2Πi/∂Ni∂αi > 0 and

∂2Πi/∂Ni∂αj < 0; (v) if αi ≤ αj, then ∂2Πi/∂Ni∂Nj < 0.

To gain insight into Corollary 1, it is helpful to decompose Πi into the prod-

uct of total demand (or sales) of firm i in equilibrium at stage 2, Di(N,α, β, γ) ≡

NiXi(N,α, β, γ), and its price-cost difference (“mark-up”), Mi(N,α, β, γ) ≡ (β −

γ + γNi)Xi(N,α, β, γ).9 That is, Πi = DiMi, implying ∂Πi/∂Nj = Mi(∂Di/∂Nj) +

Di(∂Mi/∂Nj) and

∂2Πi

∂Nj∂Ni
=

∂2Di

∂Nj∂Ni
Mi +

∂Di

∂Nj

∂Mi

∂Ni
+

∂Di

∂Ni

∂Mi

∂Nj
+Di

∂2Mi

∂Nj∂Ni
, (5)

i, j ∈ I. Total sales Di of a firm are used as measure of firm size throughout the

paper. The properties of Di and Mi as functions of (N,α), which are referred to in

the following discussion of Corollary 1, are formally derived in a supplement available

on this Journal’s editorial web site.

First, the impact of an increase in product range Ni on both equilibrium demand,

Di, and on equilibrium mark-up, Mi, are positive.10 Thus, ∂Πi/∂Ni > 0, as stated

9I am grateful to Armin Schmutzler for this suggestion.
10The latter effect may be somewhat surprising at first glance, but can easily be understood as

follows. Note that pk − ci = αi − (β − γ)Xi − γQ[= Mi] for all k ∈ Ni, i ∈ I, where Q ≡
P

iNiXi

6



in part (i) of Corollary 1.11 Moreover, strict concavity of Πi as function of Ni means

that a firm’s incentive to launch additional varieties is weaker, the more diversified the

firm is. This result is driven by the fact that the marginal gain of an increase in Ni

regarding both Di and Mi is decreasing, i.e., ∂2Di/∂N
2
i < 0 and ∂2Mi/∂N

2
i < 0. It

reflects competition within a firm’s own product line. Part (ii) of Corollary 1 means

that equilibrium profits at stage 2 decline if any rival offers additional products, which

reflects a conventional “business-stealing effect”. In fact, an increase in Nj reduces

both Di and Mi when i 6= j. Part (iii) says that, not surprisingly, Πi increases with

its own quality-cost margin, αi, but decreases with that of other firms, αj, j 6= i,

holding the configuration of product ranges N constant. Again, the effects regarding

both Di and Mi go in the same direction. According to part (iv), the profit gain of

firm i from introducing an additional variety increases with αi, but decreases with

quality-cost margins of rivals, αj, j 6= i, all other things equal. An increase in αi raises

the impact of an increase in product range Ni on both sales Di and mark-up Mi (i.e.,

∂2Di/∂Ni∂αi > 0 and ∂2Mi/∂Ni∂αi > 0), whereas an increase in αj, j 6= i, has the

opposite effect on ∂Di/∂Ni and ∂Mi/∂Ni, respectively.

Finally, consider the impact of an increase in a rival’s product range Nj on the

incentive of a firm i 6= j to launch new varieties (i.e., how ∂Πi/∂Ni changes with Nj,

j 6= i). From the previous discussion of parts (i) and (ii), for j 6= i, one can conclude

that the second and third summand of the right-hand side of (5) are both negative.

However, one can also show that the first and last summand have ambiguous sign, i.e.,

an increase in Nj, when j 6= i, may accentuate or weaken either effect, ∂Di/∂Ni and

∂Mi/∂Ni. Part (v) of Corollary 1 says that the profit gain of a firm i from increasing

product diversification is reduced by an increase in a rival’s product range Nj, j 6= i, if

equals total sales in the industry. On the one hand, it is easy to check that an increase in Ni raises Q
in stage 2 equilibrium, all other things equal (use equation (A.4) in appendix). This has a negative
effect on Mi. On the other hand, however, firm i reduces equilibrium output per variety (Xi) when
increasing Ni, which has a positive effect on Mi. The second effect dominates the first one under
Cournot competition. (This does typically not hold under Bertrand competition; see section 4.2.)
11An important assumption for this is β > γ, i.e., varieties are imperfect substitutes. In contrast, for

γ → β, the limiting profit function of a firm i at stage 2 is given by limγ→β Πi = [(Iαi−
P

j 6=i αj)/(1+

I)]2/γ, according to (3) and (4). Obviously, it does not pay for firms to supply more than one variety
in this limit case.
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αi ≤ αj. In this case, the optimal response at stage 1 to an increase in a rival’s product

number is to decrease the own number of varieties, i.e., product ranges of firms are

strategic substitutes. ∂2Πi/∂Ni∂Nj ≥ 0 may occur, however, if αi > αj.

3.2 Firms’ Choice of Number of Products (Stage 1)

The profit maximization problem for each firm i ∈ I at stage 1 is to solve

max
Ni∈[1,N̄ ]

Ψi(N,α, β, γ) ≡ Πi(N,α, β, γ)− C(Ni). (6)

Applying a classical result (Debreu, 1952), as profit functions are continuous on

Ni ∈ [1, N̄ ] and Πi is strictly concave as function of Ni (part (i) of Corollary 1),

existence of equilibrium is ensured.

Let N∗
i (α, β, γ) be an equilibrium product range offered by firm i ∈ I. Using (6),

an equilibrium configuration of product ranges, N∗, is (provided that N∗
i < N̄ for all

i) given by first-order conditions

∂Πi(N
∗,α, β, γ)

∂Ni
≤ C 0(N∗

i ), i ∈ I, (7)

with strict equality if N∗
i > 1.

3.3 Entry

As will become apparent (see Proposition 4 below), not surprisingly, firms with higher

quality-cost margins earn higher stage 1 equilibrium profits, Ψ∗i (α, β, γ) ≡ Ψi(N
∗,α, β, γ).

Moreover, since ∂Πi/∂Nj < 0 for j 6= i (part (ii) of Corollary 1), it is immediate that

entry of an additional firm lowers stage 1 profits. Thus, there exists a “long-run”

equilibrium (with free entry of firms) in which firms in the market are those with the

highest quality-cost margins. That is, there is a unique cut-off point for quality-cost

margins such that Ψ∗i (α, ·) ≥ F for entering firms and all other firms from the pool of
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potential entrants rationally anticipate that they will not be able to enter.12

3.4 Diversification of Symmetric Firms

Determinants of average diversification is examined next. Some empirical studies look

at the determinants of average diversification (e.g. Gorecki, 1975; Baldwin et al., 2000).

As asymmetry of firms is not crucial for this issue, for simplicity, suppose αi = α for

all i ∈ I, i.e., α = (α, ..., α), and focus on a symmetric equilibrium at stage 1. Thus,

we have N∗
i (α, β, γ) = N∗ for all i ∈ I. In the following, the impact of an increase

in both quality-cost margin α and the “degree of substitutability”, measured by γ, on

equilibrium product range, N∗, is considered for a given set of firms (i.e., when there

are barriers to entry).13

Proposition 2. (Diversification of symmetric firms). For a given set of symmetric

firms, an increase in α raises N∗, whereas an increase in γ lowers N∗.

Differences in α across industries may be thought of inter-industry differences in

technological characteristics. Thus, Proposition 2 is consistent with the empirical result

of Gorecki (1975) that industries which are characterized by better technological know-

how tend to be more diversified.14 Moreover, quite intuitively, better substitutability

of products lowers the incentive of firms to launch new varieties.

3.5 Firm Size and Diversification

To examine the role of quality-cost margins for the relationship between firm size and

product diversification, we first turn to the question how differences in equilibrium

12This reasoning is analogous to Anderson and de Palma (2001; Proposition 3.1), who consider a
logit model with single-product firms. As Anderson and de Palma (2001, p. 124) point out, however:
“This will not be the only equilibrium. It may be possible that some other set of firms is in the market
but yet some excluded firm with a higher quality-cost cannot profitably enter due to the presence of
established firms even though it could make more money were it to replace the latter”. Fortunately,
as will become apparent, results on the size-diversification relationship analyzed in section 3.5 hold in
any free-entry equilibrium.
13Unfortunately, for the long-run equilibrium, this analysis becomes highly intractable. The exclu-

sive focus in this subsection therefore is on the case with entry barriers.
14Gorecki (1975) uses R&D-intensity in an industry to proxy its technological know-how.
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product ranges among firms (i.e., equilibrium diversification) depend on differences in

quality-cost margins.

Proposition 3. (Diversification of asymmetric firms). Suppose that for all i, j ∈ I,

j 6= i, ¯̄̄̄
∂2Πi(N, ·)

∂N2
i

¯̄̄̄
>

¯̄̄̄
∂2Πi(N, ·)
∂Ni∂Nj

¯̄̄̄
when αi = αj . (8)

Then αi > αj implies N∗
i > N∗

j .

To gain insight into this result, let us first look at the duopoly case, I ∈ {1, 2}.

According to parts (i) and (v) of Corollary 1 and first-order conditions (7), if α1 = α2,

reaction functions are downward sloping in N1 − N2 space, as illustrated in Fig. 1.

That is, product ranges are strategic substitutes. From (7), it is also easy to see that

under condition (8), if α1 = α2, reaction function of firm 1 is steeper than that of firm

2 in Fig. 1; this ensures both uniqueness of equilibrium and N∗
1 = N∗

2 . According to

part (iv) of Corollary 1, an increase in α1 or a decrease in α2 raises the marginal gain

of firm 1 to extend its product range and reduces the marginal gain of firm 2. Thus,

when α1 > α2, any intersection of reaction curves lies South-East of the equilibrium

for α1 = α2, as illustrated by the dashed lines in Fig. 1. The reaction function of firm

2 is still downward sloping when α1 > α2, according to part (v) of Corollary 1. This

may or may not be true for firm 1. But irrespective of whether the new equilibrium is

still unique, it is apparent that α1 > α2 implies N∗
1 > N∗

2 in the duopoly case.
15

<Please insert Figure 1 about here>

This does not necessarily hold when condition (8) is violated. When α1 = α2 and

reaction function of firm 2 would be steeper than that of firm 1, there would be three

equilibria (one symmetric, one equilibrium where N∗
1 = 1 and one equilibrium with

N∗
2 = 1). Thus, when α1 > α2, an intersection of reaction curves where N∗

i > 1

for i = 1, 2 would imply N∗
1 < N∗

2 . But as can be deduced from the expressions for

15In principle, it is possible that there is no intersection of reaction curves when α1 > α2. In this
case, N∗1 = N̄ > 1 = N∗2 .
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∂2Πi/∂N
2
i and ∂2Πi/∂Ni∂Nj given in the proof of Corollary 1 (see appendix), under

rather weak restrictions condition (8) does hold.

What happens when there are other firms? As we are concerned with pairwise

comparisons of firms’ product ranges, we can analyze the game between any pair of

firms by holding fixed the actions of all other firms at equilibrium values.16 Then,

under (8), the firm with a higher quality-cost margin must again have a larger product

line.17

We are now ready to infer the relationship between firm size and diversification in

equilibrium (recall Di = NiXi). Equilibrium firm size is measured by total sales of a

firm in equilibrium, i.e., by equilibrium demand D∗
i (α, β, γ) ≡ Di(N

∗,α, β, γ), i ∈ I.

The next result is basically a corollary of Proposition 3.

Proposition 4. (Firm size and diversification in the Cournot model). Suppose

that (8) holds. Then αi > αj implies Ψ∗i > Ψ∗j and D∗
i > D∗

j for all i, j ∈ I. Thus, (i)

there exists a long-run equilibrium in which firms with the highest quality-cost margins

enter, and (ii) firm size and product diversification are positively related.

Proposition 4 says that firms with higher quality-cost margins have both higher

equilibrium profits and higher firm sizes. The first property implies that there exists

an equilibrium where firms enter the economy if and only if their quality-cost margin is

sufficiently high (part (i) of Proposition 4). The second property (positive relationship

between quality-cost margin and firm size) is consistent with evidence that productivity

of a firm is positively related to its size (Baily et al., 1992; Roberts and Supina, 2000).

Importantly, combining this result with Proposition 3, it follows that larger firms have

more diversified product lines (part (ii) of Proposition 4). The analysis suggests that

16As Athey and Schmutzler (2001) point out, important properties to generalize beyond duopoly in
such a way (applied to an investment game in their paper) are “exchangeability” of profits as functions
of (N,α) and “conditional uniqueness”. Exchangeability means that if we exchange both (Ni, αi) and
(Nj , αj) of two firms i and j (while holding characteristics of all other firms constant), then profits of
firms i and j exchange, without affecting other firms’ profits. This trivially holds in the present model.
Conditional uniqueness essentially means that if we look at two firms and hold other firms’ actions
fixed, equilibrium must be unique. Condition (8) ensures that this is the case when we consider two
symmetric firms.
17Suppose that choice sets at stage 1 are restricted to positive integers, i.e. Ni ∈ {1, 2, ..., N̄}, and

a pure-strategy equilibrium exists. In this case, one can show that αi > αj implies N∗i ≥ N∗j .
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this stylized fact is driven by differences in quality-cost margins across firms.

4 Size and Diversification in Alternative Models

This section examines whether the properties of the linear-demandmodel under Cournot

competition which give rise to a positive size-diversification relationship also hold under

modifications of the nature of competition or the structure of demand. First, Bertrand

competition in the nested multinomial logit model (e.g., Anderson and de Palma, 1992,

2001; Anderson, de Palma and Thisse, 1992) is analyzed. Second, the case of Bertrand

competition with linear demand (1) is briefly discussed and compared to the Cournot

case.

4.1 A Nested Logit Approach

Consider the nested multinomial logit model by Anderson and de Palma (1992). The

model may be described as follows. Let Pik be the probability that a consumer chooses

variety k ∈ K when supplied by firm i ∈ I. Normalizing the number of consumers to

unity, the expected demand for this product, xik, is thus given by xik = Pik. Suppose

consumers first choose a (multiproduct) firm i and subsequently choose amongst the

set Ni of products offered by i. Let Pi denote the probability that firm i is selected and

Pk|i the probability that good k ∈ Ni is selected, conditional on firm i being chosen.

Thus, Pik = PiPk|i . Suppose that the structure of preferences exactly follows Anderson

and de Palma (1992, p. 263f.) and let Ai > 0 again be the common quality measure

of varieties k ∈ Ni. That is, we obtain demand functions xik = PiPk|i with

Pi =

exp

µ
ν
µ
ln
P
l∈Ni

exp
£
Ai−pil

ν

¤¶
P
j∈I
exp

Ã
ν
µ
ln
P
l∈Nj

exp
h
Aj−pjl

ν

i! , (9)
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Pk|i =
exp

£
Ai−pik

ν

¤P
l∈Ni

exp
£
Ai−pil

ν

¤ , k ∈ Ni, (10)

where pik is the price of variety k ∈ Ni and µ ≥ ν ≥ 0.18 Suppose firms compete

in prices at stage 2. Assumptions on technology are maintained from the previous

analysis and, again, αi = Ai − ci, i ∈ I.

For tractability reasons, the exclusive focus is on the duopoly case. The following

result for stage 2 equilibrium holds.

Proposition 5. (Equilibrium at stage 2 in nested logit model). Let I = {1, 2}. At

stage 2 equilibrium, output levels and mark-ups are the same within a firm’s product line

and total output of firm i ∈ I is given by Di = Pi. Moreover, gross profits of firm i are

given by Πi = µΥi, where Υi solves Υi = (Ni/Nj)
ν/µ exp [(αi − αj)/µ+ 1/Υi −Υi],

j 6= i.

Again, the structure of demand leads to symmetry within a firm’s product line.

Total output of a firm (equilibrium sales), Di, simply equals the probability Pi that

firm i is chosen (given a unit mass of consumers). Moreover, Proposition 5 implies:

Corollary 2. For I = {1, 2}, ∂Π1/∂N1 > 0, ∂Π1/∂N2 < 0, ∂Π1/∂α1 > 0,

∂Π1/∂α2 < 0, ∂2Π1/∂N1∂α1 > 0, ∂2Π1/∂N1∂α2 < 0 and ∂2Π1/∂N1∂N2 < 0; more-

over, Ψ1 = Π1 − C(N1) is strictly quasiconcave in N1. (Firm 2 is analogous.)

Hence, the properties of profit functions in the nested logit model are similar to

those of the Cournot model with linear demand (Corollary 1). Moreover, it turns out

that in N1 − N2 space, the reaction function of firm 1 at stage 1 (choice of product

range) is always steeper than that of firm 2, i.e., equilibrium is unique (see Fig .1).

Hence, applying Corollary 2 gives rise to

18When µ > (=)ν, goods are better (equal) substitutes within a firm than across firms. More-
over, ν measures the degree of intra-firm heterogeneity of goods. If ν → 0, goods become perfectly
substitutable. (For a more detailed discussion of these issues, see Anderson and de Palma, 1992, p.
263ff.)
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Proposition 6. (Firm size and diversification in the nested logit model). For

I = {1, 2}, α1 > α2 implies N∗
1 > N∗

2 and D∗
1 > D∗

2, i.e., the firm with the higher

quality-cost margin has both larger product range and larger size.

4.2 Bertrand Case with Linear Demand

Under Bertrand competition with linear demand (1), equilibrium profits at stage 2, Πi,

can be derived analogously to Proposition 1. (The formal analysis to this subsection is

relegated to the supplement on the Journal’s editorial web site.) Decomposing profits

again into sales and mark-up, Πi = DiMi, reveals that equilibrium mark-up Mi is

typically decreasing in Ni. That is, launching additional varieties typically forces a

firm to charge lower mark-ups to balance against the increased competition induced

by availability of new varieties. For instance, in an interior Bertrand-Nash equilibrium

with two firms, one finds that ∂Mi/∂Ni < 0 if αi ≤ αj or if |αi − αj| is sufficiently

small. This is in contrast to the Cournot case, where ∂Mi/∂Ni > 0 always holds (see

section 3.1). It reflects the well-known fact that the intensity of competition under

Bertrand competition is higher than under Cournot competition.

Consequently, and in contrast to the results in Corollary 1 and 2, profits Πi may

not be increasing as a function of own product range Ni everywhere. In particular,

this may occur if the firm’s quality-cost margin is relatively low (compared to other

firms) or if substitutability among products, γ, is high. Some other properties of Πi

derived for the Cournot model and the nested logit model fail to hold in general. What

can be said, however, is the following. Focussing on the duopoly case for simplic-

ity, in the neighborhood of a symmetric equilibrium, we have ∂2Π1/∂N1∂α1 > 0 and

∂2Π1/∂N1∂α2 < 0. This suggests that the firm with the higher quality-cost margin

again offers a larger product range, provided that reaction functions are well-behaved

as in Fig. 1 (which may be the case, according to numerical analysis). Moreover, one

can show that if α1 > α2 and N∗
1 > N∗

2 , then D∗
1 > D∗

2, giving rise to a positive

size-diversification relationship.
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5 Concluding Remarks

This paper has analyzed an oligopoly framework with asymmetric multiproduct firms,

which is able to address the empirical regularity that larger firms offer more diversified

product lines. The analysis suggests that heterogeneity of enterprises with respect to

technological characteristics is a driving force behind a positive relationship between

firm size, measured by total sales, and product diversification. Moreover, it has been

shown that quality-cost margins also play a crucial role for average product diversifi-

cation at the industry level, as does the substitutability of goods.

Admittedly, the focus of the present analysis on the number of products as measure

of product diversification is quite narrow. For instance, Gollop and Monahan (1991)

construct a diversification index which, in addition to the number of products supplied

by an enterprise, also accounts for the distribution of sales from these products within

a firm and differences in the heterogeneity of products. However, applying this index

to a large data set of U.S. manufacturing firms and establishments, they find that

the “number component is the dominant force” in explaining corporate diversification

(p. 327). This gives some justification for focussing the theoretical analysis on the

number of products, exogenously fixing the degree of product differentiation, and in

turn leading to a uniform sales distribution within a firm.

The proposed oligopoly framework with asymmetric multiproduct firms may be em-

ployed to examine other interesting questions. To name one, the issues of profitability

and desirability of horizontal mergers with multiproduct firms remain an area open to

further analysis, which can be addressed in this framework.

Appendix

Proof of Proposition 1: First, note that πi =
P

k∈Ni
(pk − ci)xk implies

∂πi
∂xk

= pk − ci +
X
l∈Ni

∂pl
∂xk

xl, (A.1)
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where ∂pl/∂xl = −β and ∂pl/∂xk = −γ for l 6= k, according to demand structure (1).

Thus, optimal behavior of firm i ∈ I at stage 2 is given by the following set of first-order

conditions (presuming an interior solution): αi−2βxk−γ
P

l∈K\{k} xl−γ
P

l∈Ni\{k} xl =

0, k ∈ Ni, where ak = Ai for k ∈ Ni and αi = Ai − ci has been used. Adding and

subtracting 2γxk implies

αi − 2(β − γ)xk − γQ− γ
X
l∈Ni

xl = 0, (A.2)

where Q ≡
P

l∈K xl is total output in the market. Thus, xk = Xi for all k ∈ Ni, which

implies
P

l∈Ni
xl = NiXi. Hence, using (A.2),

Xi =
αi − γQ

2(β − γ) + γNi
. (A.3)

Also note that Q =
P

iNiXi. Multiplying both sides of (A.3) by Ni and summing over

all i ∈ I, one thus obtains

γQ =

P
i αiΓi

1 +
P

i Γi
, (A.4)

where Γi = γNi/ [2(β − γ) + γNi] has been used. (A.4) implies

αi − γQ =
Λi

1 +
P

i Γi
, (A.5)

where Λi is defined in Proposition 1. Combining (A.3) and (A.5) yields (3).

To obtain (4), first, note that pk−ci = αi−γQ−(β−γ)xk for all k ∈ Ni, according

to (1), ak = Ai for k ∈ Ni and αi = Ai − ci. Since xk = Xi for all k ∈ Ni and

αi − γQ = [2(β − γ) + γNi]Xi, according to (A.3), we obtain equilibrium price-cost

differences pk − ci = (β − γ + γNi)Xi[= Mi] for all k ∈ Ni. Finally, noting that

Πi = NiXiMi confirms (4). This concludes the proof. ¥

Proof of Corollary 1: First, let us write
P

h∈I Γh = 1 + Φ−i + Γi, where Φ−i ≡

16



P
h6=i Γh. Thus, using Γi = γNi/ [2(β − γ) + γNi], we have

Xi =
Λi

(1 + Φ−i) (2(β − γ) + γNi) + γNi
, (A.6)

according to (3). By substituting (A.6) into (4), we obtain

Πi =
Ni(β − γ + γNi)Λ

2
i

[(1 + Φ−i) (2(β − γ) + γNi) + γNi]
2 . (A.7)

Tedious derivations reveal that19

∂Πi

∂Ni
=
(β − γ) [2(β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]Λ

2
i

[(1 + Φ−i) (2(β − γ) + γNi) + γNi]
3 > 0, (A.8)

∂2Πi

∂N2
i

=
−2γ(β − γ)Λ2i

[(1 + Φ−i) (2(β − γ) + γNi) + γNi]
4 × (A.9)£

β − γ + γNi + (β − γ + 5γNi)Φ−i + 3γNiΦ
2
−i
¤
< 0.

Moreover, for j 6= i,

∂Πi

∂Nj
=
−4γ(β − γ)Ni (β − γ + γNi) (2(β − γ) + γNi)ΛiΛj

[2(β − γ) + γNj]
2 [(1 + Φ−i) (2(β − γ) + γNi) + γNi]

3 < 0, (A.10)

∂2Πi

∂Ni∂Nj
= − 4γ(β − γ)2Λi

[(1 + Φ−i) (2(β − γ) + γNi) + γNi]
4 [2(β − γ) + γNj]

2 × (A.11)

{(αi − αj) [2 (β − γ + γNi) + (2(β − γ) + 3γNi)Φ−i]×

[2 (β − γ + γNi) + (2(β − γ) + γNi)Φ−i]−

Λi [(2(β − γ) + γNi) (2(β − γ) + 3γNi)Φ−i + 4(β − γ)(β − γ + γNi)]}.

(A.8) and (A.9) confirm part (i) of Corollary 1 and (A.10) confirms part (ii). (Recall

that Λi,Λj > 0 in interior equilibrium.) Moreover, note that for all i, j ∈ I, j 6= i,

19Detailed derivations of (A.8)-(A.11) can be found in the supplementary material on the Journal’s
editorial web site.
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∂Λi/∂αi > 0 and ∂Λi/∂αj < 0 (recall Λi = αi

³
1 +

P
j 6=i Γj

´
−
P

j 6=i αjΓj). Using this,

parts (iii) and (iv) follow from (A.7) and (A.8), respectively. Part (v) follows from

(A.11) and the definition of Λi. This concludes the proof. ¥

Proof of Proposition 2: First, letW (N,α, β, γ) ≡ ∂Πi(N, ..., N, α, ..., α, β, γ)/∂Ni

and consider the following

Lemma A.1. ∂W/∂α > 0 and ∂W/∂γ < 0.

Proof. Noting that Λi = α under symmetry of firms, ∂W/∂α > 0 is immediately

implied by (A.8). ∂W/∂γ < 0 is shown in the supplement on the Journal’s editorial

web site.

According to (7) and the definition ofW , the equilibrium product range,N∗, is given

by W (N∗, α, β, γ)− C 0(N∗) = 0. Applying the implicit function theorem, one obtains

∂N∗/∂ξ = (∂W/∂ξ) /∆ for ξ ∈ {α, γ}, where ∆ ≡ ∂2Πi/∂N
2
i +

P
j 6=i ∂

2Πi/∂Ni∂Nj −

C 00(N∗) < 0. Thus, ∆ < 0, according to C 00(·) ≥ 0 as well as parts (i) and (v) of

Corollary 1. Proposition 2 then follows from Lemma A.1. ¥

Proof of Proposition 4: It is first proven that αi > αj implies Ψ∗i > Ψ∗j . The

proof is by contradiction. Note that αi > αj implies Ψi(N,α, ·) > Ψj(N,α, ·) if

Ni = Nj, according to part (iii) of Corollary 1, and recall ∂Πi/∂Nj < 0 for j 6= i

from part (ii) of Corollary 1. Now suppose Ψ∗i (α, ·) ≤ Ψ∗j(α, ·) if αi > αj and recall

that under (8), we have N∗
i > N∗

j if αi > αj (Proposition 3). Also suppose firm i

decreases its product range from N∗
i to Ni = N∗

j , which increases profits of firm j (as

∂Πj/∂Ni < 0 for i 6= j). Moreover, profits of firm i would now be higher than those

of j (as seen above). Thus, profits of i must have increased. But this means that no

situation with Ψ∗i (α, ·) ≤ Ψ∗j(α, ·) if αi > αj can occur.

To show that αi > αj implies Ψ∗i > Ψ∗j , define Γ
∗
i ≡ γN∗

i / [2(β − γ) + γN∗
i ] and

Λ∗i ≡ αi

Ã
1 +

X
j 6=i

Γ∗j

!
−
X
j 6=i

αjΓ
∗
j , (A.12)
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i ∈ I. Thus, one can write

D∗
i (α, ·) = N∗

i Xi(N
∗,α, ·) = N∗

i Λ
∗
i

(1 +
P

i Γ
∗
i ) [2(β − γ) + γN∗

i ]
, (A.13)

according to (3). Hence, we have D∗
i (α, ·) > D∗

j (α, ·) if and only if

N∗
i Λ

∗
i

2(β − γ) + γN∗
i

>
N∗

j Λ
∗
j

2(β − γ) + γN∗
j

. (A.14)

Recall from Proposition 3 that N∗
i > N∗

j if αi > αj. Thus, using (A.14), the result is

confirmed if, for instance, αi > αj implies Λ∗i > Λ∗j . To see that this is indeed the case,

first, rewrite (A.12) as

Λ∗i = αi

Ã
1 +

X
h6=i,j

Γ∗h

!
+ (αi − αj)Γ

∗
j −

X
h6=i,j

αhΓ
∗
h, (A.15)

i, j ∈ I. (A.15) then implies that

Λ∗i − Λ∗j = (αi − αj)

Ã
1 +

X
h6=i,j

Γ∗h

!
+ (αi − αj)Γ

∗
j − (αj − αi)Γ

∗
i

= (αi − αj)

Ã
1 +

X
i∈I

Γ∗i

!
, (A.16)

i.e., Λ∗i > Λ∗j if αi > αj. This concludes the proof. ¥

Proof of Proposition 5: Noting that xil = PiPl|i for all l ∈ Ni, at stage 2 firm

i solves max
pil, l∈Ni

P
l∈Ni

(pil − ci)PiPl|i s.t. (9) and (10). The first-order condition with

respect to pik yields:

PiPk|i +
X
l∈Ni

(pil − ci)
∂Pi

∂pik
Pl|i +

X
l∈Ni

(pil − ci)Pi

∂Pl|i

∂pik
= 0. (A.17)

Using (10), it is straightforward to show that ∂Pk|i/∂pik = −Pk|i (1− Pk|i )/ν and, for

l 6= k, ∂Pl|i/∂pik = −Pk|iPl|i )/ν; moreover, ∂Pi/∂pik = −Pi(1 − Pi)Pk|i/µ, according
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to (9), k ∈ Ni. Substituting these expressions into (A.17), one obtains20

pik − ci = ν +
h
1− µ

ν
(1− Pi)

iX
l∈Ni

(pil − ci)Pl|i . (A.18)

We seek for a price equilibrium in which pik − ci is the same for all k ∈ Ni. UsingP
l∈Ni

Pl|i = 1, (A.18) implies that mark-up pik−ci = µ/(1−Pi) in such an equilibrium.

Thus, pik = ci + µ/(1 − Pi), which implies Ai − pik = αi − µ/(1 − Pi) ≡ ζ i for all

k ∈ Ni. Using this fact, Pk|i = 1/Ni for all k ∈ Ni, according to (10). Thus, recalling

xik = PiPk|i , we have xik = Pi/Ni for all k ∈ Ni. This confirms that both output levels

and mark-ups are the same within a firm’s product line. Moreover, obviously, Di = Pi.

We next turn to derive Π1. (The derivation of Π2 is analogous.) Substituting

Ai − pik = ζi into (9), one obtains in duopoly:

P1 =
(N1)

ν/µ

(N1)ν/µ + (N2)ν/µ exp
h
ζ2−ζ1
µ

i . (A.19)

Also note that p1k− c1 = µ/(1−P1) and Pk|1 = 1/N1 for all k ∈ N1 imply
P

l∈N1(p1l−

c1)P1Pl|1 = µP1/(1− P1) [= Π1] for stage 2 equilibrium profits of firm 1. Thus, using

(A.19),

Π1 = µ

µ
N1

N2

¶ν/µ

expχ, (A.20)

where χ ≡ (ζ1−ζ2)/µ. Moreover, recalling ζi = αi−µ/(1−Pi) and using P2 = 1−P1, we

have χ = (α1−α2)/µ−1/ (1− P1)+1/P1. We can now confirm that Υ1 = P1/(1−P1)

(and thus Π1 = µΥ1 > 0) with Υ1 as defined in Proposition 5. To see this, first, note

that Υ1 = P1/(1− P1) implies 1/P1 = 1/Υ1 + 1 and 1/(1− P1) = 1 +Υ1. Thus,

χ =
α1 − α2

µ
+
1

Υ1
−Υ1. (A.21)

In view of (A.20), this confirms Π1 = µΥ1 with Υ1 as defined in Proposition 5. ¥

Proof of Corollary 2: Using Υ1 = (N1/N2)
ν/µ expχ, we obtain ∂Υ1/∂N1 =

20Comparison to Anderson and de Palma (1992, p. 272f.) reveals that, in the duopoly case, one
can follow their proof to establish existence of a unique price equilibrium at stage 2.
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Υ1 [(ν/µ)/N1 + ∂χ/∂N1] and ∂Υ1/∂N2 = Υ1 [−(ν/µ)/N2 + ∂χ/∂N2], where ∂χ/∂Ni =

−(1/Υ2
1 + 1)∂Υ1/∂Ni, i ∈ {1, 2}, according to (A.21). Combining these results and

solving for ∂Υ1/∂N1 and ∂Υ1/∂N2 yields

∂Υ1

∂N1
=

(ν/µ)Υ1

N1

³
1 +Υ1 +

1
Υ1

´ > 0 and
∂Υ1

∂N2
= −N1

N2

∂Υ1

∂N1
< 0, (A.22)

respectively. Similarly, ∂Υ1/∂αi = Υ1∂χ/∂αi, i ∈ {1, 2}, where ∂χ/∂α1 = 1/µ −

(1/Υ2
1 + 1)∂Υ1/∂α1 and ∂χ/∂α2 = −1/µ− (1/Υ2

1 + 1)∂Υ1/∂α2, according to (A.21).

Hence,
∂Υ1

∂α1
=

Υ1/µ

1 +Υ1 +
1
Υ1

> 0 and
∂Υ1
∂α2

= −∂Υ1

∂α1
. (A.23)

Thus, as Π1 = µΥ1 and Υ1 > 0, ∂Π1/∂N1 > 0, ∂Π1/∂N2 < 0, ∂Π1/∂α1 > 0,

∂Π1/∂α2 < 0, according to (A.22) and (A.23). Moreover, using again (A.22) and

Π1 = µΥ1, it is easy to show that

∂2Π1
∂N1∂δ

=
ν
³
1 + 2

Υ1

´
∂Υ1
∂δ

N1

³
1 +Υ1 +

1
Υ1

´2 , (A.24)

δ ∈ {α1, α2, N2}. Hence, as ∂Υ1/∂α1 > 0, ∂Υ1/∂α2 < 0 and ∂Υ1/∂N2 < 0, one finds

∂2Π1/∂N1∂α1 > 0, ∂2Π1/∂N1∂α2 < 0 and ∂2Π1/∂N1∂N2 < 0, respectively. Finally,

to confirm strict quasiconcavity of Ψ1 = Π1 − C(N1) as a function of N1, note that

∂2Ψ1/∂N
2
1 = ∂2Π1/∂N

2
1 − C 00(N1), where

∂2Π1
∂N2

1

= − νΥ1

N1

³
1 +Υ1 +

1
Υ1

´
| {z }

=µ(∂Υ1/∂N1)

1

N1
+ µ

∂Υ1

∂N1

ν
µ

³
1 + 2

Υ1

´
N1

³
1 +Υ1 +

1
Υ1

´2 , (A.25)

according to Π1 = µΥ1 and (A.22). Hence,

∂2Π1
∂N2

1

= −
µ∂Υ1
∂N1

N1

³
1 +Υ1 +

1
Υ1

´2 ∙Υ1(2 +Υ1) + 2 +
1

Υ2
1

+

µ
1− ν

µ

¶µ
1 +

2

Υ1

¶¸
< 0

(A.26)
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(recall ν ≤ µ). This confirms Corollary 2. ¥

Proof of Proposition 6: The result is proven in two steps. First, it is shown that

α1 > α2 implies N∗
1 > N∗

2 , and second, that α1 > α2 implies D∗
1 > D∗

2.

Step 1: Corollary 2 implies that reaction functions at stage 1 are downward-sloping

inN1−N2 space. Moreover, an increase in αi or a decrease in αj shifts the reaction curve

of firm i outward and that of firm j 6= i inward. Hence, α1 > α2 implies N∗
1 > N∗

2 if the

reaction function of firm 1 is steeper than that of firm 2 (compare Fig. 1). Applying

the implicit function theorem to (7) and using C 00 ≥ 0, a sufficient condition for this is

∂2Π1
∂N2

1

∂2Π2
∂N2

2

>
∂2Π1

∂N1∂N2

∂2Π2
∂N1∂N2

. (A.27)

Substituting (A.24) and (A.26) into (A.27) as well as using both (A.22) and ν ≤ µ

reveals that (A.27) holds if

∙
Υ1(2 +Υ1) + 2 +

1

Υ21

¸ ∙
Υ2(2 +Υ2) + 2 +

1

Υ22

¸
>

µ
1 +

2

Υ1

¶µ
1 +

2

Υ2

¶
. (A.28)

It is easy to show that, for any (Υ1,Υ2), (A.28) is fulfilled. This concludes step 1.

Step 2: To see that α1 > α2 also implies D∗
1 > D∗

2, recall that Υi solves Υi =

(Ni/Nj)
ν/µ exp [(αi − αj)/µ+ 1/Υi −Υi], j 6= i (Proposition 5). Thus, obviously, Υ1 >

Υ2 if α1 > α2 and N1 > N2. But we already know that N∗
1 > N∗

2 if α1 > α2. Hence, in

equilibrium, Υ1 > Υ2 if α1 > α2. Finally, recall that Di = Pi and Υ1 = P1/(1 − P1),

i.e., P1 = Υ1/(1 +Υ1). This confirms D∗
1 > D∗

2 if α1 > α2, concluding the proof. ¥
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Figure 1: Comparison of 21 αα =  (solid lines) and 21 αα >  (dashed lines). 
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